
Development notes for GAVO DaCHS

Author: Markus Demleitner
Email: gavo@ari.uni-heidelberg.de

Contents

Package Layout 1

Error handling, logging 2

Exception classes . 2

The events subsystem . 2

Catching exceptions . 3

Testing 4

XSD validation . 4

Setting package installs up for testing 5

Test framework . 5

Regression testing of data . 5

pyflakes . 6

Test Plan . 6

Configuration 7

Structures 8

1

mailto:gavo@ari.uni-heidelberg.de

Metadata 9

Getting Metadata . 9

Setting Metadata . 9

Memoization 10

Profiling 11

Debugging 11

Debugging memory leaks . 12

Delimited SQL identifiers 13

Grammars 13

Procedures 14

Schema updates 16

Javascript 17

gavo.js . 17

samp.js . 19

jquery.flot.js . 19

Building jquery-gavo.js . 19

Different Database Backends 19

Implementing Protocols 21

Random Stuff 21

Tracing imports . 21

Move to some "well known properties" section soon 21

matplotlib . 21

Some of this is severely out of date.

2

Package Layout
The following rules should be followed as regards subpackages of gavo in order
to keep the modules dependency graph manageable (and facilitate factoring out
libraries).

∙ Each functionality block is in a subpackage, the __init__ for which con-
tains the main functions, classes, etc., of the the sub-package interface
most clients will be concerned with. Clients needing special tricks may
still import individual modules (but then they’re in much larger danger of
breaking). What’s in __init__ should be considered "public interface"
and hence changed very carefully if at all.

∙ Within each subpackage, no module imports the sub-package, i.e., a mod-
ule in base never says "from gavo import base"

∙ A subpackage may have a module common, containing objects that mul-
tiple modules within that subpackage requires. common may not import
any module from the subpackage, but may be imported from all of them.
No rules wrt importing modules from the same subpackage exist of other
modules. Just apply common sense here to avoid circular imports.

∙ Don’t use import *. It interferes with our static checking. For relative
imports, we will probably be slowly migrating towards from . import over
the current absolute imports (from gavo.base import...).

∙ There is a hierarchy of subpackages, where subpackages lower in the
hierarchy may not import anything from the higher or equal levels, but
only from lower levels. This hierarchy currently looks like this: imp [<]
utils < stc < (votable, adql) < base < rscdef < grammars < formats <
rsc < svcs < registry < protocols < web < rscdesc < (helpers, user) utils
should never assume anything from imp is present, i.e., it may attempt to
import from there, but it should not fail hard if the import doesn’t work.
Of course, concrete functions (e.g., from utils.fitstools) won’t work if the
base libraries are not present.

Error handling, logging

Exception classes

It is the goal that all errors that can be triggered from the web or from within
resource descriptors yield sensible error messages with, if possible, information
on the location of the error. Also, major operations changing the content of the
database should be loggable with time and, probably, user information.

3

The core of error processing is utils.excs. All "sensible" exceptions (i.e., Mem-
oryErrors and software bugs excepted) should be instances of gavo.excs.Error.
However, upwards from base you should always raise exceptions from base;
all ("public") exception types from utils.excs are available there (i.e., raise
base.NotFoundError(...) rather than utils.excs.NotFoundError(...)).

The base class takes a hint argument at construction that should give additional
information on how to fix the problem that gave rise to the exception. All
exception constructor arguments except the first one must always be keyword
arguments as a simple hack to allow pickling the excepitons.

When defining new exceptions, if there is structured information (e.g., line
numbers, keys, and the like), always keep the information separate and use the
__str__ method of the exception to construct something humans want to see.
All built-in exceptions should accept a hint keyword.

The events subsystem

All proper DC code (i.e. above base) should do user interaction through
base.ui.notify<something>. In base and below, you can use utils.sendUIEvent,
but this should be reserved for weird circumstances; code so far down should’t
normally need to do user interaction or similar.

The <something> can be various things. base.events defines a class Event-
Dispatcher (an instance of which then becomes base.ui) that defines the no-
tify<something> methods. The docstrings there explain what you’re supposed
to pass, and they explain what observers get.

base.events itself does very little with the events, and in particular it does not do
any user interaction -- the idea is that I may yet want to have Tkinter interfaces
or whatever, and they should have a fair chance to control the user interaction
of a program.

The actual action on events is done by observers; these are ususally defined in
user, and some can be selected from the gavo command line. For convenience,
you should derive your Observer classes from base.ObserverBase. This lets you
stuff like:

from gavo.base import ObserverBase, listensTo

class PlainUI(ObserverBase):
@listensTo("NewSource")
def announceNewSource(self, srcString):

print "Starting %s"%srcString

However, you can also just handle single events by saying things like:

4

from gavo import base

def handleNewSource(srcToken):
pass

base.ui.subscribeNewSource(handleNewSource)

Most logging is done in user.logui; if you want logging, say:

from gavo.user import logui

logui.LoggingUI(base.ui)

Catching exceptions

In the DC software, is is frequently desirable to ignore the first rule of excep-
tion handling, viz., leave them alone as much as possible. Instead, we often
map exceptions to DC-internal exceptions (this is very relevant for everything
leading up to ValidationErrors, since they are used in user interaction on the
web interface). However, to make the original exception information available
for debugging or problem fixing, whenever you "translate" an exception, have
base.ui.notifyExceptionMutation(newException) called. This should arrange log-
ging the exception to the error log (although of course that’s up to the observer
selected).

The convenient way to do this is to call ui.logOldExc(exc):

raise base.ui.logOldExc(GavoError(...))

LoggingUI only logs the information on old exceptions when base.DEBUG is
true. You can set this from your code, or by passing the --debug option to gavo.

Testing
In an installed checkout of DaCHS, you can go to the tests subdirectory and
run:

python runAllTests.py

for a fairly extensive set of unit tests.

This uses some management of test scaffolds; when something is severely wrong,
generating these scaffolds can fail and the execution of the suite will stop. I’m
not decided whether to regard that as a bug or a feature, but I’ll not fix it any
time soon. So, if this bites you, find out why resource generation fails and fix
it.

5

XSD validation

XML Schema is a pain all around, and there doesn’t seem to be an XSD validator
capable of handling the thicket that is the schema landscape of the VO.

Hence, we’re trying to use xerces in a fairly specific way. If this isn’t set up, all
tests involving validating XSD will be skipped.

To make this work, you first need xerces itself, which on debian is the pack-
age libxerces2-java, and you’ll also need libxerces2-java-doc (really). These
packages will dump the necessary jars (xercesImpl.jar and xmlParserAPIs.jar)
in /usr/share/java; if you have a different setup, you’ll need to edit xsdclasspath

in tests/test_data/test-gavorc within your checkout and curse java’s classpath
construct.

After that, just tear down the test environment (rm -r ~/_gavo_test; dropdb

dachstest) and run some test. If all is well, the validator will be built and run.
You can also manually build the validator by going to the schemata subdirectory
and saying python makeValidator.py. This will use your normal environment,
though, so the validator (xsdval.class) will end up in the "real" cache directory
(which is good, as it then is available for regression testing). You’ll need to
manually copy it to ~/_gavo_test/caches/ then.

Setting package installs up for testing

The debian package does not contain unit tests. If you want to nevertheless run
them, check out the release corresponding to your package from http://svn.ari.
uni-heidelberg.de/svn/gavo/python/tags/. Again, see the tests subdirectory in
your checkout.

Test framework

All unit tests must import gavo.helpers.testhelpers before importing anything
else from the gavo namespace. This is because testhelpers sets up a test envi-
ronment in /var/tmp/gavo_test (set in tests/data/test-gavorc). To make this
work reliably, it must manipulate the normal way configuration files are read.

helpers.testhelpers needs a dachstest database for which the current user is a
superuser. It will create it provided you’re a DB superuser with ident authenti-
cation (see install to figure out how to set this up).

There are doctests in modules (though fewer than I’d like), and pyunit- and
trial-based tests in <project root>/tests. tests/runAllTests.py takes care of
locating and executing them all.

6

http://svn.ari.uni-heidelberg.de/svn/gavo/python/tags/
http://svn.ari.uni-heidelberg.de/svn/gavo/python/tags/

In addition to setting up the test environment, testhelpers provides (check out
the source) some useful helper functions (like getTestRD), the VerboseTest class
adding test resources and some assertions to the normal unittest.TestCase. Do
not import it in production code. Test-like functionality interesting to produc-
tion code should go to helpers.testtricks.

testhelpers.main is useful after an if __name__==’__main__’ in test modules. Pass
a default test class, and you can call the module without arguments (in which
case it will run all tests), with a single argument (that will be interpreted as a
method prefix to locate tests on the default TestCase) or with two arguments
(a TestCase name and a method prefix to find the methods to be run). All
pyunit-based tests use this main.

testhelpers.main evaluates the TEST_VERBOSITY environment variable. With
TEST_VERBOSITY=2, you’ll see the test names as they are executed.

Regression testing of data

For certain kinds of data, unit testing is useful, too. Since it’s always possible
that server code changes may break such tests, it makes sense to run those unit
tests at each commit. Therefore, tests/runAllTests.py has a facility to pick up
such tests from directories named in $GAVO_INPUTS (the "real" one, not the
fake test one) in the __tests/__unitpaths. It will pick up tests from there just
as it picks them up from tests.

Such data-based tests (typically) must run "out of tree", i.e., in the actual
server environment where the resources expected by the service tested are. To
keep testhelper from fudging the environment, set the environment variable
GAVO_OOTTEST to anythign before importing testhelpers. This is conveniently
done in python, like this:

import os
os.environ["GAVO_OOTTEST"] = "dontcare"

from gavo.helpers import testhelpers

pyflakes

Not really testing, but static code checking using pyflakes should regularly be
done, and result in no warnings eventually (right now, more annotations are
required).

We have added a simple ignoring facility in our pyflakes driver,
tests/flake_all.py:

7

∙ To ignore (not check) an entire file, add, preferably near the top, a line
like:

Not checked by pyflakes: (reason)

Please always give a reason so people can tell whether it has gone away
and the file should now be included in the checks.

∙ To ignore a single error, add a comment like:

#noflake: (rationale)

to the line reported by pyflakes.

Also note that flake_all hardcodes that modules from imp are not checked.

Test Plan

(This is somewhat specific to Markus’ setup; something similar is recommended
for everyone, though)

Before every commit, do:

∙ start a local server

∙ go to $checkout/tests

∙ python flake_all.py (which does some static code checking)

∙ python runAllTests.py (which arranges for doctests, pyunit tests, trial
tests, and data unit tests to be run)

∙ run gavo val -tv ALL (which, apart from validating the RDs, also runs the
RD-defined regression tests against the server running locally)

∙ go to $checkout

∙ run svn status to make sure no files are left not in version control or
explicitely ignored

After a checkout on the production server, do:

∙ gavo test -t bigserver -u http://dc.g-vo.org/ ALL (which runs all tests
defined in the local RDs, even for the production server, against the pro-
duction server; this does what it’s supposed to da as the repo for the RDs
is the same on development and production).

8

Configuration
DaCHS has far too many configuration hooks: gavo.rc, defaultmeta.txt, the
database profiles, vanitynames.txt, userconfig.rd, as well as locally-overridden
system RDs and templates. At least defaultmeta.txt was a mistake, as was
probably vanitynames.txt. We should be working on getting rid of it.

New configuration should preferably go into userconfig.rd, while there’s always
going to be room for gavo.rc, too.

Configuration items for userconfig.rd typically are going to be STREAMs. To
provide fallbacks for those if the user hasn’t defined any, there’s //userconfig,
which also serves as built-in documentation for what’s there. As an identifier
is resolved in //userconfig, the system first looks in a etc/userconfig.rd and
then, even if that file exists (but has no element with the id in question), in
//userconfig.

When using the elements, always use the canonical abbreviation for userconfig,
%, as in <FEED source="%#registry-interfacerecords"/>.

Structures
Resource description within the DC works via instances of base.Structure. These
parse themselves from XML strings, do validation, etc. All compound RD ele-
ments correspond to a structure class (well, almost; meta is an exception).

A structure instance has the following callbacks:

∙ completeElement(ctx) -- called when the element’s closing tag is encoun-
tered, used to fill in computed defaults. ctx is a parse context that you
can use to, e.g. resolve XML ids.

∙ validate() -- called after completeElement, used to raise errors if some
gross ("syntactic") mistakes are in the element

∙ onElementComplete() -- called after validate, i.e., elementCompleted can
rely on seeing a "valid" structure

In addition, attributes can define onParentCompleted methods. These are called
after onElementCompleted of the parent element is run when the attribute value
is different from its default. They receive the new attribute value as the single
argument. Maybe this is bad design.

This processing is done automatically when parsing elements from XML. When
building elements manually, you should call the structure’s finishElement method
when done to arrange for these methods being called.

9

If you override these methods, make sure you call the methods of the superclass.
Since we might, at some point, want mixins to be able to define validators etc,
use super()-based superclass calling, through _completeElementNext(cls, ctx),
_validateNext(cls), and _onElementCompleteNext(cls).

The user.docgen module makes documentation out of these structures. There
are several catches. One of the more striking is that element names in the entire
DaCHS code must be unique, since docgen generates section heading from
those names and actually checks that these headings are unique; hence, only
one (essentially randomly selected) of two identically-named elements would be
documented, and parent links would both point there.

Since there are cases when that limitation is a real pain (e.g., the publish ele-
ment of services and data), there’s a workaround: you can set a docName_ class
attribute on a structure that contains the name used for the documentation.
See rscdef.common.Registration for an example.

Metadata
"Open" metadata (as opposed to the attributes of columns and the like) is kept
in a meta_ structure added by base.meta.MetaMixin. You should probably not
access that attribute directly if at all possible since the current implementation
is incredibly messy and liable to change.

For this kind of metadata, a simple inheritance exists. MetaMixins have a
setMetaParent method that declares another structure as the current’s meta
parent. Any request for metadata that cannot be satisfied from self will then
be propagated up to this parent (unless propagation is suppressed). Usually,
parents will call their children’s setMetaParent methods.

The metdata is organized in a tree with MetaItem‘‘s as nodes. Each MetaItem

contains one or more children that are instances ‘‘MetaValue (or more spe-
cialized classes). A MetaValue in turn can have more MetaItem children.

Getting Metadata

Metadata are accessed by name (or "key", if you will).

The getMeta(key, ...)->MetaItem method usually follows the inheritance hierar-
chy up, meaning that if a meta item is not found in the current instance, it will
ask its parent for that item, and so on. If no parent is known, the meta infor-
mation contained in the configuration will be consulted. If all fails, a default
is returned (which is set via a keyword argument that again defaults to None)
or, if the raiseOnFail keyword argument evaluates to true, a gavo.NoMetaKey
exception is raised.

10

If you require metadata exactly for the item you are querying, call getMeta(key,
propagate=False).

getMeta will raise a gavo.MetaCardError when there is more than one matching
meta item. For these, you will usually use a builder, which will usually be a
subclass of meta.metaBuilder. web.common.HtmlMetaBuilder is an example
of how such a thing may look like, for simple cases you may get by using
ModelBasedBulder (see the registry code for examples). This really is too messy
and needs to be replaced by something smarter.

The builders are passed to a MetaMixin’s buildRepr(metakey, builder) method
that returns whatever the builder’s getResult method returns.

Setting Metadata

You can programmatically set metadata on any metadata container by call-
ing its method addMeta(key, value), where both key and value are (unicode-
compatible) strings. You can build any hierarchy in this way, provided you stick
with typeless meta values or can do with the default types. Those are set by
key in meta._typesForKeys.

To build sequences, call addMeta repeatedly. To have a sequence of containers,
call addMeta with None or an empty string as value, like this:

m.addMeta("p.q", "x") m.addMeta("p.r", "y") m.addMeta("p", None)
m.addMeta("p.q", "u") m.addMeta("p.r", "v")

More complex structures require direct construction of MetaValues. Use the
makeMetaValue factory for this. This function takes a value (default empty),
and possibly a key and/or type arguments. All additional arguments depend on
the meta type desired. These are documented in the reference manual.

The type argument selects an entry in the meta._typesForKeys table that spec-
ifies that, e.g., _related meta items always are links. You can also give the type
directly (which overrides any specification through a key).

This can look like this:

m.addMeta("info", meta.makeMetaValue("content", type="info",
infoName="someInfo", infoValue="GIVEN"))

Memoization
The base.caches module should be the central point for all kinds of memo-
ization/caching tasks; in particular, if you use base.caches, your caches will

11

./ref.html

automatically be cleared on gavo serve reload. To keep dependencies and risks
of recursive imports low, it is the providing modules’ responsibility to register
caching functions. The idea is that, e.g., rscdesc wants a cache of resource
descriptors. Therefore, it says:

base.caches.makeCache("getRD", getRD)

Clients then say:

base.caches.getRD(id).

This mechanism for now is restricted to items that come with a unique id (the
argument). It would be easy to extend this to multiple-argument functions, but
I don’t think that’s a good idea -- the "identities" of the cached objects should
be kept simple.

No provision is made to prevent accidental overwriting of function names.

Profiling
If you want to profile server actions, try a script like this:

"""
Make a profile of server responses.

Call as

trial --profile createProfile.py
"""

import sys

from gavo import api
from gavo.web import dispatcher

sys.path.append("/home/msdemlei/gavo/trunk/tests")

import trialhelpers

class ProfileThis(trialhelpers.RenderTest):
renderer = dispatcher.ArchiveService()

def testOneService(self):
self.assertGETHasStrings("/ppmx/res/ppmx/scs/form",

{"hscs_pos": "12 2", "hscs_sr": "20.0"},

["PPMX"])

12

After running, you can use pstats on the file profile.data.

To profile actually running DaCHS operations, use the --profile-to <profile file>
option of the gavo program. For the server, you must make sure in cleanly exists
in order to have meaningful stats. Do this by accessing /test/exit on a debug
server.

Debugging
For anything outside of the server, lines like:

import code; code.interact(local=locals())

(for getting a python prompt to look around and introspect, e.g., using dir();
exit to let the program continue) and:

import pdb;pdb.set_trace()

(which dumps you into the debugger and lets you single-step, etc) are your
friends.

When you want to inspect what’s going on within the server, in particular when
something only manifests itself after a long time, you may want to have a
look at twisted’s manhole; quite a bit easier, however, is to use the debug/q
rd that you can get from http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/
debug and adapt it to your needs.

The idea here is that within q.rd#1 you create customDFs or customRFs ex-
posing what you’re interested in. You can then use those in res/page1.html.
You can edit both files "live", they will both be reloaded as necessary.

Debugging memory leaks

Sometimes one is careless and leaves a reference somewhere, perhaps in an
RD. Since this really only matters in the server, such situations are particularly
insidious to debug. To help there, there’s some scaffolding in web.root.

To activate things, you set MEM_DEBUG to True. Down in locateChild of
ArchiveService, there’s code like:

if MEM_DEBUG:
from gavo.utils import codetricks
import gc
gr = gc.get_referrers
if hasattr(base, "getNewStructs"):

ns = base.getNewStructs()

print ">>>>>> new structs:", len(ns)

13

http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/debug
http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/debug

What this lets you do is see when new structs are left somewhere in DaCHS’
guts. What you do when such a thing happens is higher magic. I’ve found it
helps to put something like a mini-memory debugger right into that handler.
There’s a rough one in testtricks, so you could put in something like:

if len(ns)==147:
from gavo.helpers import testtricks
ob = ns[0]
del ns

testtricks.debugReferenceChain(ob)

after the print (of course, this only makes sense if you’re running gavo serve

debug, as the actual server detaches from its tty). This lets you go through the
objects referring to the first struct left over by hitting Return.

Enter anything to follow the (inverse) reference, except that a d will drop you in
the debugger and x will continue normal execution. Do this until you see where
the reference comes from. Just be aware that many references are harmless --
in particular, this function will hold a reference to the object in question, so
you’ll need some experience to figure out where to look.

Delimited SQL identifiers
Although it may look like it, we do not really support delimited identifiers (DIs)
as column names (and not at all as table names). I happen to regard them as
an SQL misfeature and really only want to keep them out of my software.

However, TAP forces me to deal with them at least superficially. That means
that using them elsewhere will lead to lots of mysterious error messages from
inside of DaCHS’s bowels. There still should not be any remote exploits possible
when using them.

Here’s the deal on them:

They are represented as utils.misctricks.QuotedName objects. These Quoted-
Names have some methods to control the impact the partial support for delim-
ited identifiers has on the rest of the software. In particular, when you stringify
them, they result in string ready for inclusion into SQL (i.e., hopefully prop-
erly escaped). The hash to the name, i.e., there are no implied quotes, and,
unfortunately, hash(di)!=hash(str(di)).

The DC software right now assumes DIs are ASCII only (what do the standards
people say?).

The one real painful thing is the representation of result rows with DIs -- I did
not want to have lots of these ugly QuotedNames in the result rows, so they

14

end up as SQL-escaped strings when used as keys. This is extra sad since in
this way for a DI column foo, rec[QName("foo")] raises a KeyError. To work
around this, fields have a key attribute, and rec[f.key] should never bomb.

Grammars
Grammars are DaCHS’ means of turning some external data to rowdicts, i.e.,
dictionaries that map grammar keys to values that are usually strings. They are
fed to rowmakers to come up with rows suitable for ingestion (or formatting).

A grammar consists of a Grammar object, which is a structure inheriting from
grammars.Grammar. It contains all the "configuration" (e.g., rules). Grammars
have a parse method receiving some kind of source token (typically, a file name).
You will normally not need to override it.

The real action happens in the row iterator, which is declared in the rowIter-
ator class attribute of the grammar. Row iterators should inherit from gram-
mars.RowIterator.

TODO: yieldsTyped, rowfilters, sourceFields, targetData

Do not import modules from the grammars subpackage directly. Instead, use
rscdef.getGrammar with the name of the grammar you want. If you define a
new grammar, add a line in rscdef.builtingrammars.grammarRegistry. To inspect
what grammars are available, consult the keys from rscdef.grammarRegistry.

Procedures
To embed actual (python) code into RDs, you should use the infrastructure
given in rscdef.procdef. It basically leads up to ProcApp, which is what’s usually
embedded in RDs.

ProcApp inherits from ProcDef, a procedure definition. Such a definition gives
some (python) code that is executed when the procedure is applied. To set up
the execution environment of this code, there’s the definition’s setup child.

The setup contains code and parameters. The code is executed to set up the
namespace that the procedure will run in; it is thus executed once -- at con-
struction -- per procedure. The parameters allow configuration of the procedure.
This is the place to do relatively expensive operations like I/O or imports.

For example, //procs#resolveObject creates the resolver in its setup code; this
happens only once per creation of the embedding RD:

<procDef type="apply" id="resolveObject">
<setup>

<par key="ignoreUnknowns">True</par>

15

<par key="identifier" late="True"/>
<code>

from gavo.protocols import simbadinterface
resolver = simbadinterface.Sesame(saveNew=True)

</code>
</setup>
<doc>...</doc>
<code>
ra, dec = None, None
try:

ra, dec = resolver.getPositionFor(identifier)
except KeyError:

if not ignoreUnknowns:
raise base.Error("resolveObject could not resolve object"

" %s."%identifier)
vars["simbadAlpha"] = ra
vars["simbadDelta"] = dec

</code>

</procDef>

The setup definition introduced two parameters. One is ignoreUnknowns, which
is "immediate" and just lets the code see a name ignoreUnknowns. As with all
par elements, the content of the element is a python expression providing a
default.

The other parameter, identifier, is a "late" identifier. This means that it is
evaluated on each application of the procedure, much like a function argument.
These are just translated into assignments at the top of the function body,
which means that everything available in the procedure code is available; e.g.,
for rowmaker procedures (i.e., type="apply"), you can access vars here.

Taken together, late and immediate par allow for all kinds of configuration of
procedures. This is particularly convenient together with macros.

To actually execute the code, you need some kind of procedure application.
These always inherit from procdef.ProcApp and add bindings. The bind element
lets you give python expressions for all names defined using par in the setup child
of the ProcDef given in the procDef attribute. You can also define just a procedure
application without a procDef by giving setup and code.

Procedure application have "types" -- these give where they can be used. In
particular, the type determines the signature of the python callable that the
procedure application is compiled into. procdef.ProcApp has no type, and thus
is "abstract"; it should never be a child factory of any StructAttribute.

Instead, inherit from it and give

∙ name_ -- the element name, as always in structures. This is "apply" for
rowmaker applys, "rowfilter" for grammar rowfilters, etc

16

∙ formalArgs -- a python argument list that gives the arguments of the
callable a ProcApp of this type is compiled into. Thus, this defines the
signature.

∙ requiredType -- a type name that specifies what kind of ProcDef the ap-
plication will accept. This will in general be the same as name_. None
would mean accept all, which probably is useless.

So, all you need to do to define a new sort of ProcApp is write something like:

class EmbeddedIterator(rscdef.ProcApp):
name_ = "iterator"

formalArgs = "self"

(of course, here, documentation as to what the code is supposed to do is
particularly important, so don’t leave out the docstring when actually doing
anything.

Then, you could have:

_iterator = base.StructAttribute("iterator", default=base.Undefined,
childFactory=EmbeddedIterator,

description="Code yielding row dictionaries", copyable=True)

in some structure. To produce something you can execute, then say:

theIterator = self.iterator.compile()
for row in theIterator(self):

print row

or somesuch.

Schema updates
If you need to change the on-disk schema, you must provide an updater in
gavo.user.upgrade. See the docstring on Upgrade on what you can and should
do in there.

The version attribute of your new upgrader must be the value of
upgrader.CURRENT_SCHEMAVERSION (defined near the top) when you start working.
After you have defined your upgrader, increase CURRENT_SCHEMAVERSION
by one.

At Heidelberg, the next step would be to try the upgrader using:

17

testgavo upgrade

The effects should be visible in the dachstest database.

If you follow the rules, upgrade should be atomic, i.e., either the upgrade suc-
ceeds or the database is untouched, letting operators downgrade and continue
operations until a problem is figured out.

If, on development, you notice your instructions have not had the desired effect,
things are more difficult. You can, in principle, re-run the entire procedure by
executing something like:

update dc.metastore set value=5 where key=’schemaversion’;

to re-set the schema version to the initial value, but that doesn’t really help
when changes are already in the database. During development, it pays to keep
a quick backup of current database files so it’s easy to entirely roll back if the
upgrade hasn’t quite worked.

Javascript
While it’s our goal to let people operate the web-based part of DaCHS without
javascript enabled, it’s ok if fancier functionality depends on javascript.

After some hesitation, we decided to use the jquery javascript library (we used
to have MochiKit but left that when we wanted nice in-browser plotting; so, if
you still see MochiKit somewhere, please disregard). We also include some of
jquery-ui.

We keep all javascript in "full" source form (in resources/web/js). DaCHS
performs on-the-fly minimisaton (unless [web]jsSource is False).

For development of that, it’s much more convenient if the stuff that gets served
out is in source. To enable that, set [web]jsSource to true. This needs actual
code support; right now this only works for files served out in commonhead.
You need to restart the server for the setting to take effect.

gavo.js

The commonhead renderer that’s applied to almost all pages pulls in the
javascript from resources/web/js/gavo.js. This includes some utility functions
in the global namespace (and some that should be moved elsewhere). In par-
ticular, it contains quite a bit of ugly mess for managing the output formats.

Here’s a discussion of some features that may be interesting to template authors.

18

Built-in templating

There’s a very plain templating engine in javascript included, using an idea due
to John Resig, http://ejohn.org/. According to this, you define a template in
your HTML as a script of type text/html:

<script type="text/html" id="tmpl_authorHeader">

<a class="arrow-e"
onclick="toggleAuthorResources(this)" name="$author"/>
$author ($nummatch)

</script>

The $varName parts can then be filled – properly HTML-escaped – by calling:

renderTemplate("tmpl_authorHeader", {
author: ’Thor, A. U’,

nummatch: 8})

Currently, filling variables is the only thing the engine knows how to do.

Fairly Simple Tabs

There’s built-in javascript and CSS for switching tabs. The tabs require
Javascript, so you’ll usually want to hide them from non-JS-browsers. Thus, to
define the tabs, do something along the lines of:

<script type="text/html" id="tabbar_store">
<ul id="tabset_tabs">

<li class="selected">By Title
By Subject
By Author

</script>

<p id="tab_placeholder" style="border:2pt dashed #bb9999;padding: 0.5ex">

Enable Javascript for more choices.</p>

Note how the tab headings are within a elements that have a name – it’s this
name that lends identity to them. You could have hrefs for better non-javascript
fallback if you have the tabs without javascript; remove the href attributes when
you have javascript active, though.

Then, in your javascript, say:

19

http://ejohn.org/

$(document).ready(function() {
$("#tab_placeholder").replaceWith(

$(document.getElementById("tabbar_store").innerHTML));
$("#tabset_tabs li").bind("click", makeTabCallback({

’by-subject’: func1,
’by-author’: func2,
’by-title’: func3,

}));

}

(or do something equivalent, if you don’t like the innerHTML here). The func-
tions in the dictionary passed to makeTabCallback must then work on the con-
tainer below the tabs. Here’s CSS you could base the container css on:

position: relative;
background-color: #EAEBEE;
margin-top: 0px;

min-height:70ex;

The CSS that styles the tabs is in resources/web/css/gavo_dc.css, the images
necessary in resources/web/img.

samp.js

This is Mark Taylor’s samp.js, checked out from https://github.com/astrojs/
sampjs.git.

jquery.flot.js

That’s the plotting code. We got it from http://www.flotcharts.org/

Building jquery-gavo.js

∙ Go to a temporary directory

∙ Go to http://jqueryui.com/download and make yourself a jquery-ui
archive. Currently, we want all the core, plus draggable and resizable
(plus probably Dialog, though that’s not used yet). Do not select any
theme.

∙ Unzip the file, go to the js subdirectory of the distribution

∙ concatenate external/jquery/jquery.js and jquery-ui.js go jquery-gavo.js

∙ copy jquery-gavo.js to gavo/resources/web/js

Whatever CSS is necessary for jquery should for now go into gavo_dc.css – I’m
cutting and pasting.

20

https://github.com/astrojs/sampjs.git
https://github.com/astrojs/sampjs.git
http://www.flotcharts.org/
http://jqueryui.com/download

Different Database Backends
A request we get fairly regularly is to make DaCHS work with database engines
other than Postgres, with MySQL and Oracle being the most popular alterna-
tives for external requests and SQLite something we personally would like to see
for ease of deployment.

The short answer to all this: It’s tricky. You might get away with using foreign
data wrappers in some cases; a group at Paris Observatory reports fairly good
results with them.

Here’s the longer answer: DaCHS does a lot of inspection of the database,
while at the same time worrying about different access levels, reconnection on
database restarts, and similar; it also creates extension types. We are not aware
of any abstraction layer that would let us keep all this code generic, and that’s
why we let DaCHS slide into a fairly deep entanglement with psycopg2 and
Postgres.

Seeing such an entanglement reduces the scope of DaCHS, we’d certainly help
pulling it out of the entanglement. We probably won’t do it ourselves. Here’s a
list of things that would need to be done for un-entanglement, that’s probably
somewhat incomplete and also contains some project mines (innocuous-looking
things that blow up into a lot of refactoring once you step on them):

(a) separate what’s specific to postgresql+psycopg2 from sqlsupport,
put that into a module (backend_postgres, say), devise some sort
of dispatcher to backends, and have, to work out things, a sec-
ond backend, that would then contain different implementations for
tableExists, indexExists, and so on. Actually, throwing out some
cruft from sqlsupport that should have gone ages ago would be a
good thing, too.

(b) figure out what other hidden dependencies exist; the most worrisome
part probably is the extension types DaCHS uses and registers as
well as the pgSphere interface; this is built into typesystems and
used left and right. If there’s no way to hide DB-specific differences,
there’ll have to be some major redesign. Also, DaCHS implicitely
assumes TEXT in the database is cheap. If that’s not true of a DB
(and I think in Oracle TEXT can’t be properly indexed) and you’ll
want much more VARCHARs and similar, minor adjustments might
be in order.

(c) The ADQL translator would need to get another "morpher" (the
thing that turns ADQL parse trees into the language of the backend
database) That’s already forseen, but figuring out how to enable

21

https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers

maximum reuse of code between the different morphers might take
some thought. Also, again the question of spherical geometry in
the backend will have to be looked at.

(d) Some mixins directly depend on postgres features (//scs#q3cindex
is an obvious example). I believe it’d be ok to say "well, don’t
use these on non-Postgres", and we’d provide similar things for the
other DBs. But that would make RDs non-portable, which I don’t
like too much either.

(e) The C boosters generate material for Postgres binary copy. Obvi-
ously, one would need to figure out the analogon on other databases
(which may not be well-documented; I had to check the Postgres
source for some details, too) and then split up boosterskel.c into
generic and postgres-specific parts. Or there’d be no support for C
boosters on different databases, which might not be unreasonable,
either.

Implementing Protocols
TBD

You should add the protocol mixin(s) in user.docgen.PUBLIC_MIXINS so they
get included in the documentation; likewise if you need apply and/or rowfilters,
amend PUBLIC_APPLYS or PUBLIC_ROWFILTERS.

Random Stuff

Tracing imports

Sometimes it’s nice to see what gets imported when. Futzing with PEP 302-
style import hooks is a pain, and indeed a simple shell line produces more useful
output than naive hooks:

strace gavo imp -h 2>&1 | grep ’open’ | grep -v ENOENT | grep -v "pyc" | sed -e ’s/.*"\(.*\)".*/\1/’

Move to some "well known properties" section soon

To declare support for standard data models (TAPRegExt), add supportsModel
and supportsModelURI properties to a table definition belonging to this model.
(This needs to be documented somewhere else).

22

matplotlib

To use matplotlib and pyplot within renderers or some other server context, use
the following import pattern:

import matplotlib
matplotlib.use("Agg")

from matplotlib import pyplot

It is crucial that the use("Agg") happens before the import of pyplot. If you fail
to do this properly, your code will fail complaining about missing DISPLAYs.

I guess we’ll soon properly depend on matplotlib and to that initialization in a
good place in utils, but don’t hold your breath.

23

	Contents
	Package Layout
	Error handling, logging
	Exception classes
	The events subsystem
	Catching exceptions

	Testing
	XSD validation
	Setting package installs up for testing
	Test framework
	Regression testing of data
	pyflakes
	Test Plan

	Configuration
	Structures
	Metadata
	Getting Metadata
	Setting Metadata

	Memoization
	Profiling
	Debugging
	Debugging memory leaks

	Delimited SQL identifiers
	Grammars
	Procedures
	Schema updates
	Javascript
	gavo.js
	samp.js
	jquery.flot.js
	Building jquery-gavo.js

	Different Database Backends
	Implementing Protocols
	Random Stuff
	Tracing imports
	Move to some "well known properties" section soon
	matplotlib

